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Abstract: Fixed-wing aircraft generate lift and propul-transportation, aerial surveillance, cargo transport, and sion using their wings, relying on forward motion for military operations [2]. This preference is due to the airflow instead of rotating blades like helicopters. They inherent advantages rooted in the aerodynamic design offer advantages such as extended range, higher ve-and operational characteristics. The advantages of fixed-locities, stability in turbulent weather, and lower op-wing aircraft are numerous and encompass various as-erational costs compared to rotary-wing aircraft. This pects of performance, efficiency, versatility, and oper-study introduces a method to enhance control smooth-ational capability. Compared to rotary-wing aircraft, ness for fixed-wing aircraft using Linear Quadratic Gaus-fixed-wing types offer extended flight range and ensian control and Proportional-Integral filter compen-durance due to their design optimized for forward mo-sation. Flight simulators like FlightGear are employed tion rather than vertical takeoff and hovering [3]. Ad-to test control algorithms, providing realistic flight dy-ditionally, fixed-wing aircraft can achieve significantly namics and versatile options for various aircraft types. 

higher speeds, thanks to their aerodynamic configura-This approach offers a cost-effective and efficient means tion, and they demonstrate superior stability in turbu-to develop and test controllers for challenging flight lent weather conditions [4]. Moreover, fixed-wing air-scenarios, while demonstrating the performance of the craft can carry larger payloads and offer lower opera-LQG+PI method by displaying the trends in longitu-tional and maintenance costs than rotary-wing aircraft. 

dinal and lateral control errors. 

Flight simulators are a cost-effective and efficient Keywords PI+LQG · fixed-wing aircraft · FlightGear way to calibrate, test, and improve control algorithms before conducting experiments on fixed-wing aircraft. 

Whether for military, entertainment, or commercial ap-1 Introduction

plications, a suitable simulator can be an excellent tool for proper vehicle handling, particularly when the ve-Fixed-wing aircraft are airplanes that generate lift and hicle can be damaged if the pilot loses control or is propulsion by directing airflow over their wings, which inexperienced [5]. In this context, the control of an air-remain fixed in position during flight [1]. Unlike rotor-craft that is challenging to test in a laboratory can be craft such as helicopters, which utilize rotating wings or significantly enhanced by utilizing a simulator with flex-blades to achieve lift, fixed-wing aircraft rely on forward ible characteristics capable of interfacing with mathe-motion to create the airflow necessary for lift genera-matical software, especially when assessing responses tion. While rotary-wing aircraft offer enhanced maneu-to wind disturbances that are difficult to measure and verability due to their ability to perform vertical take-replicate experimentally. Simulation software such as off and hovering, fixed-wing aircraft are the standard X-Plane, AirSim, Gazebo, and FlightGear have such in aviation for various purposes, including long-distance capabilities, with research studies employing them for Mar´ıa del Carmen Claudio
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els. Given these features, FlightGear can communicate where
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real aircraft [8]. This approach leverages a high degree (2)

of realism provided by FlightGear, which utilizes estab-lished and realistic Flight Dynamics Models (FDMs) [9]
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based on nonlinear equations of motion. 
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dle emerges during the linearization process and the dy-0
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namic alteration of linearization points, leading to un-wanted abrupt maneuvers [11]. To overcome this chal-Here, the state vector is xLO = [u ω q θ]T and the lenge, this study introduces a PI filter compensation longitudinal control vector (elevator and throttle) is method aimed at enhancing the smoothness of LQG-η = [δe δT ]T . The orientation of the body is determined generated control. As the aircraft, we used the F-104

by (β, θ, ϕ), with β representing the yaw rotation about Starfighter data to achieve the linearized model while the Z-axis, θ the pitch rotation about the Y-axis, and employing its complete dynamics within FlightGear. 

ϕ the roll rotation about the X-axis. 

The results show the lateral and longitudinal behav-On the other hand, the equation for the lateral con-ior of the system, indicating a trend of control errors trol is:

towards zero. 
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ment, we must consider the contributions to its velocity and

from both the linear velocities (u, v, w) in each of the coordinate directions and the contributions due to the
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fore, the time rates of change of the coordinates in an LA = 
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inertial frame that is instantaneously coincident with 0

0

the body axes are:

Here, the state vector is xLA = [β p r ϕ]T and the lateral control vector (aileron and rudder) is η = [δa δr]T . 

˙

x = u + qz − ry, 

˙

y = v + rx − pz, 

3 PI-Filter compensation

ż = w + py − qx. 

The non-zero point regulator is designed under the as-The linearized equations are derived from Caughey sumption that the system to be controlled is modeled et al. [12]. In this way, for the longitudinal control, the without error and that any system disturbances are equation is given by:

white random processes. However these conditions are
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Fig. 1 The body axis system is centered at the center of gravity of the flight vehicle. The y-axis extends out towards the right wing. 

which can be accomplished by adding new states to then, the equation (7) can be written as: the closed-loop system. The state vector is augmented, x∗ 
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The control law (10) can be rearranged as where R1, M, Q1, and Q2 are gain matrices. 
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The implementation of the complete controller is vi-sualized in Fig. 3, where the connection of the control
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Fig. 3 Proportional-integral (PI) regulator for nonsingular command vector where the aircraft type is specified (in our case, the flight simulator and mathematical software like Mat-F-104 Starfighter), along with the simulation start date lab, crucial for real-time control and simulation. Results and time, and the UDP ports for information exchange. 

presented demonstrate the longitudinal and lateral be-Finally, the controllers defined in Section 3 are pro-havior of the controlled system, indicating a trend to-grammed in Simulink, as shown in Fig. 4. 

wards minimal control errors. 

4.2 States and control errors

Appendix: Tables with constants required for linearization

The intercommunication between programs allows read-ing the states of the simulated aircraft in Matlab, while the control actions are reflected in FlightGear. Thus, we Table 1 Constants for Longitudinal–Directional System plot all states of both longitudinal and lateral behavior in Figures 6 and 7, respectively. For the longitudinal Parameter

Value

behavior, we assume a constant throttle, while setting Stability Derivative

Xu = −0.0093

an elevation of 20 degrees, starting from an initial el-Angle of Attack Deriv. 

Xw = −0.0253

evation of -20 degrees. On the other hand, for the lat-Stability Derivative

Zu = −0.0236

Angle of Attack Derivative

Zw = −0.1982

eral behavior, both pitch and roll need to be controlled. 

Gravity in Slugs

g = 32.174

Therefore, the roll starts from an angle of 5 degrees, Initial vel. 

u0 = 1740.81

with a desired roll of 20 degrees. Similarly, the pitch Compressibility Effect Deriv. 

Mu = 0.0

starts from an angle of 10 degrees and needs to reach Elev. Deflection

Xe = 0.0

Dimensional Pitching Mom. Deriv. 

Mw = −0.0104

5 degrees. Both Figure 6 and Figure 7 demonstrate the Dimensional Pitching Mom. Deriv. 

M ˙

w = 0.0

trend of errors approaching zero. 

Dimensionless Pitching Mom. Deriv. 

Mq = −0.1845

Thrust Deflection

XT = 0

Thrust Deflection

ZT = 0

Pitching Mom. (Thrust Deflection) MT = 0

5 Conclusions

Pitching Mom. (Elevator Deflection) Me = −18.1525

Elevator Deflection

Ze = −87.9155

In conclusion, this study focuses on the development and implementation of control techniques for fixed-wing aircraft, leveraging flight simulators as a primary tool for algorithm validation and testing. Key methodolo-gies such as LQG control and PI filter compensation Conflict of interest

are employed to enhance control smoothness and efficiency. The integration of UDP-based communication The authors declare that they have no conflict of inter-tunnels facilitates seamless data exchange between the est. 
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Fig. 4 Programming of the controller in Simulink Table 2 Constants for Lateral–Directional System Parameter

Value

Roll Rate

Yp = 0.0

Sideslip Derivative

Yβ = −175.6628

Yaw Rate Derivative

Yr = 0

Aileron Deflection Derivative

Ya = 0

Rolling Moment

Lp = −0.8864

Rolling Moment

Lr = 4.0927

Rolling Moment

La = −63.6874

Roll Acceleration

Lβ = −48.1804

Yawing Moment

Na = −0.0777

Yawing Moment

Np = −0.0182

Yawing Moment

Nr = −1.3522

Yaw Acceleration

Nβ = 7.5224
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