
International Journal of Engineering Insights: (2024) Vol. 2, Nro. 1, Regular Paper
https://doi.org/10.61961/injei.v2i1.18

Early Fault Detection in Paper Machine Motors Using
Machine Learning

Cristian P. Chuchico · Oscar Acosta Agudelo

Received: 18 Feb 2024 / Accepted: 02 May 2024 / Published: 16 May 2024

Abstract: This research addresses the application of

a neural network as a tool for early fault detection in

the motors of a paper machine under a simulated en-

vironment. It proposes the analysis of variables from

a torque control loop. The data for training and vali-

dating the model is obtained through the simulation of

Direct Torque Control (DTC) of an AC motor in Sim-

scape within Simulink. Both normal and faulty operat-

ing modes are considered. Under these two scenarios,

various speed setpoints are configured, and the neces-

sary data for training the developed model is collected.

Keywords Machine Learning · Predictive Mainte-

nance · Paper Machine · DTC · Simscape

1 Introduction

In the industrial sector, especially in areas like paper

manufacturing where operational efficiency and pro-

cess continuity are paramount, equipment maintenance

plays a crucial role in the success and profitability of op-

erations. Maintenance management is sometimes con-

ducted traditionally with manual records and data en-

try in spreadsheets, methodologies that have yielded

good results for industrial production [1]. However, this

approach involves several issues, such as human errors

in data collection and record entry, the frequency of

maintenance plan execution, among others. Therefore,

the ability to effectively prevent unexpected motor fail-

ures remains a significant challenge [2][3].
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Moreover, artificial intelligence has seen broad evo-

lution across diverse fields, including service sectors,

healthcare [4], robotics [5], and the industrial domain.

In this context, predictive maintenance, supported by

advances in technologies such as machine learning, could

emerge as a strategy to ensure the availability and re-

liability of industrial assets and processes [6][7]. For

instance, [8] shows the application of neural network

classifiers is proposed for detecting anomalies such as

specks and various types of diffraction in a laser beam.

The research achieves an accuracy of around 99% with

very short processing times, aiming to reduce reliance

on an expert for beam evaluation. Moreover, a review

of ML technologies related to predictive maintenance

of conveyor belts is conducted in [9], summarizing the

results and challenges of various methodologies used in

these systems. In addition, [10] shows a multihead neu-

ral network developed under the variability of individ-

ual machine degradations to derive machine-level prog-

nostics. This network learns degradation features and

updates remaining useful lifetime (RUL) distributions

from diverse distribution ensembles. Even though these

articles are closely related to the paper manufacturing

sector, a comprehensive analysis using artificial intelli-

gence to extend the useful life of engines might still be

unresolved.

In this work, a machine learning algorithm is in-

corporated into the predictive maintenance of the drive

motors of a paper machine. The aim is to provide a tool

that facilitates the early diagnosis of anomalies in mo-

tor operation, thereby preventing mechanical damage

to couplings, crosses, and cardan shafts in the system.

With the incorporation of this tool, the information

from operating variables such as speed reference, speed

feedback, motor current, torque reference, and motor

torque (calculated based on motor voltage and current)

is analyzed. This analysis helps determine whether the

machine’s operation is adequate or if there is a need

to plan activities to address out-of-standard conditions,

thereby avoiding unplanned production stoppages [11][12].

The document presents the result of a direct torque
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Fig. 1 Direct Torque Control (DTC) system.

control (DTC) simulation of a three-phase motor using

Simscape in MATLAB [13], from which the parameters

for training the neural network are obtained [14]. The

main contribution of this work is the incorporation of

a neural network for anomaly detection in motors in

the paper industry. By validating the contribution of

this neural network, it is possible to integrate the algo-

rithm into a real production environment and connect

it to the SCADA system via an OPC server, simplify-

ing signal interpretation and contributing to industrial

maintenance management.

2 Neural Network Configuration and Training

2.1 Simulation Scenario Setup

For the implementation of the simulation environment,

Simscape Electrical blocks are used, starting with one

of the direct torque control (DTC) exercises available

on the official MathWorks website [15]. The main blocks

within the simulated environment are: the direct torque

controller, the noise signal activation, and the elements

that emulate the physical system: power supply, recti-

fier block, inverter, and motor. Fig. 1 shows the cited

setup and its connections.

2.2 Data Generation for Training

As described in Table 1, during the model simulations,

different combinations of speed and torque are applied

by using step signals at specific time intervals at the

controller inputs, see Figure 2.

Once the controller’s operation has been verified, a

simulation is run with the same speed and torque set-

points, incorporating random noise in the system feed-

back to emulate abnormal system behavior. The results

shown in Figure 3 indicate that the controller exhibits

highly oscillatory behavior.

The simulation behavior aligns with mechanical issues

encountered in a real system, as shown in Figure 4. The

figure displays the torque of four motors: motors a and

b are operating normally, while motors c and d exhibit

signals from systems with mechanical problems.

The data for the analysis are obtained from several sim-

ulations, which include different scenarios such as ac-

celeration, deceleration, and steady state. The training

of the algorithm is based on identifying the behavior of

the torque control loop variables. For this purpose, 6

variables are considered, from which a total of 533310

samples are obtained. The analyzed variables are:

– Set Point or speed reference in RPM.

– Motor speed feedback.

– Set point or torque reference.

– Torque control signal (controller output).

– Motor torque.

– Motor current.

2.3 Neural Network Training

The process is divided into several trials to define the

best parameters for the neural network, with the con-

figurations shown in Table 2. After the training pro-

cess, the model’s performance is evaluated using con-

fusion matrices for each trial, allowing us to visual-

ize the model’s ability to correctly classify normal and
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Table 1 Example of applied speed and torque combinations.

step Operation State Torque Ref Torque Motor Speed Ref

T1 Null Null Null Null
T2 Acceleration Null Over Reference 0 to 1200 RPM
T3 Stable 600 and 100 Nm According with reference 1200 RPM
T4 Deceleration 100 Nm Under refernce 1200 to 500 RPM
T5 Stable 100 Nm According with reference 500 RPM
T6 Acceleration & Stable 100 Nm Over and according with reference 500 to 700 RPM

Fig. 2 Direct Torque Control loop response, normal operating conditions.

Fig. 3 Direct Torque Control loop response, operating conditions with noise.
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Fig. 4 Torque trends of 4 motors: a) and b) normal operation, c) and d) with mechanical issues.

faulty operating states of the system. The results of

each trial conducted are presented below: In the first

trial, the confusion matrix (Figure 5) shows that the

model achieved a 70.3% accuracy. In the second trial,

whose results are presented in the confusion matrix in

Figure 6, the model’s consistency was confirmed, and a

72.7% accuracy was achieved. Subsequently, in Trial 3,

an increase in the input data was made, and three previ-

ous samples were considered for analysis. That is, to de-

termine the system’s performance at time t0, the values

corresponding to t−3, t−2, t−1, and t0 were taken into

account. Therefore, if the same variables are considered

for each moment in time, the number of neurons in the

input layer will be 24. With the changes considered, a

73.9% accuracy was achieved, and the model’s ability to

distinguish between normal and faulty states improved

(Figure 7). In Trial 4, the algorithm’s robustness and its

ability to generalize from the training data were demon-

strated, achieving the best performance (Figure 8). For

Trial 5, an adjustment was made to the data alloca-

tion as follows: 70% for training and 30% for testing, in

order to evaluate whether the algorithm maintains its

performance and to rule out overfitting of the network

(Figure 9).

3 Metrics Calculation

Based on the developed trials, precision, accuracy, and

recall are calculated, considering the values of true pos-

itives (TP), false positives (FP), false negatives (FN),

and true negatives (TN) shown in each of the confusion

matrices from the previous section. Accuracy indicates

the proportion of correct predictions and is defined as

(1):

Fig. 5 Confusion matrix, Trial 1

accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision shows the proportion of correct positive pre-

dictions. (2):

precision =
TP

TP + FP
(2)

Recall indicates the proportion of actual positives that

have been correctly predicted. (3):
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Table 2 Configuration of the conducted trials.

Trial Input layer size Hidden layer size Output layer size Training-validation sample split

Trial 1 6 2 2 90 - 10
Trial 2 6 5 2 90 - 10
Trial 3 24 1 2 90 - 10
Trial 4 24 3 2 90 - 10
Trial 5 24 3 2 70 - 30

Fig. 6 Confusion matrix, Trial 2.

Fig. 7 Confusion matrix, Trial 3.

Fig. 8 Confusion matrix, Trial 4.

Fig. 9 Confusion matrix, Trial 5.
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Fig. 10 Metrics calculated for each trial conducted.

recall =
TP

TP + FN
(3)

Using the values obtained in (see Sect. 2.3) and ac-

cording to (1), (2), and (3), the metrics for each of the

trials are obtained (Fig. 10). The best performance of

the neural network is achieved with the structure pro-

posed in Trial 4. Finally, in Trial 5, this structure is

maintained, but the percentage of samples assigned for

training is set to 70% and for validation to 30%. Un-

der these conditions, precision reaches 98.7%, accuracy

99.1%, and recall 99.5%, indicating that the algorithm

performs well under the proposed scenario and condi-

tions

4 Conclusions

The main contribution of this work is the application of

a neural network for the early detection of faults based

on the analysis of variables from a direct torque con-

trol (DTC) system. Using Simscape in MATLAB, the

simulation environment was configured, and the nec-

essary data for model training was generated. It has

been demonstrated that the developed system can sat-

isfactorily identify normal and fault conditions with an

accuracy exceeding 99%, confirming the effectiveness of

the adopted approach and highlighting the potential of

machine learning to enhance predictive maintenance in

industrial environments.

As shown in the development of this proposal, it is

possible to design a machine learning algorithm that

continuously analyzes motor operation variables with-

out interfering with daily production activities, provid-

ing a basis for future research and practical applications

related to optimizing control systems and reducing op-

erational costs through early fault detection.
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