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Abstract: This research addresses the application of Moreover, artificial intelligence has seen broad evo-a neural network as a tool for early fault detection in lution across diverse fields, including service sectors, the motors of a paper machine under a simulated en-healthcare [4], robotics [5], and the industrial domain. 

vironment. It proposes the analysis of variables from In this context, predictive maintenance, supported by a torque control loop. The data for training and vali-advances in technologies such as machine learning, could dating the model is obtained through the simulation of emerge as a strategy to ensure the availability and re-Direct Torque Control (DTC) of an AC motor in Sim-liability of industrial assets and processes [6][7]. For scape within Simulink. Both normal and faulty operat-instance, [8] shows the application of neural network ing modes are considered. Under these two scenarios, classifiers is proposed for detecting anomalies such as various speed setpoints are configured, and the neces-specks and various types of diffraction in a laser beam. 

sary data for training the developed model is collected. 

The research achieves an accuracy of around 99% with very short processing times, aiming to reduce reliance Keywords Machine Learning · Predictive Mainte-on an expert for beam evaluation. Moreover, a review nance · Paper Machine · DTC · Simscape of ML technologies related to predictive maintenance of conveyor belts is conducted in [9], summarizing the results and challenges of various methodologies used in 1 Introduction

these systems. In addition, [10] shows a multihead neural network developed under the variability of individ-In the industrial sector, especially in areas like paper ual machine degradations to derive machine-level prog-manufacturing where operational efficiency and pro-nostics. This network learns degradation features and cess continuity are paramount, equipment maintenance updates remaining useful lifetime (RUL) distributions plays a crucial role in the success and profitability of op-from diverse distribution ensembles. Even though these erations. Maintenance management is sometimes con-articles are closely related to the paper manufacturing ducted traditionally with manual records and data en-sector, a comprehensive analysis using artificial intelli-try in spreadsheets, methodologies that have yielded gence to extend the useful life of engines might still be good results for industrial production [1]. However, this unresolved. 

approach involves several issues, such as human errors In this work, a machine learning algorithm is in-in data collection and record entry, the frequency of corporated into the predictive maintenance of the drive maintenance plan execution, among others. Therefore, motors of a paper machine. The aim is to provide a tool the ability to effectively prevent unexpected motor fail-that facilitates the early diagnosis of anomalies in mo-ures remains a significant challenge [2][3]. 

tor operation, thereby preventing mechanical damage to couplings, crosses, and cardan shafts in the system. 
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NEURAL NETWORK CONFIGURATION AND TRAINING

Fig. 1 Direct Torque Control (DTC) system. 

control (DTC) simulation of a three-phase motor using Once the controller’s operation has been verified, a Simscape in MATLAB [13], from which the parameters simulation is run with the same speed and torque set-for training the neural network are obtained [14]. The points, incorporating random noise in the system feed-main contribution of this work is the incorporation of back to emulate abnormal system behavior. The results a neural network for anomaly detection in motors in shown in Figure 3 indicate that the controller exhibits the paper industry. By validating the contribution of highly oscillatory behavior. 

this neural network, it is possible to integrate the algo-The simulation behavior aligns with mechanical issues rithm into a real production environment and connect encountered in a real system, as shown in Figure 4. The it to the SCADA system via an OPC server, simplify-figure displays the torque of four motors: motors a and ing signal interpretation and contributing to industrial b are operating normally, while motors c and d exhibit maintenance management. 

signals from systems with mechanical problems. 

The data for the analysis are obtained from several simulations, which include different scenarios such as ac-2 Neural Network Configuration and Training celeration, deceleration, and steady state. The training of the algorithm is based on identifying the behavior of 2.1 Simulation Scenario Setup the torque control loop variables. For this purpose, 6

variables are considered, from which a total of 533310

For the implementation of the simulation environment, samples are obtained. The analyzed variables are: Simscape Electrical blocks are used, starting with one

– Set Point or speed reference in RPM. 

of the direct torque control (DTC) exercises available

– Motor speed feedback. 

on the official MathWorks website [15]. The main blocks

– Set point or torque reference. 

within the simulated environment are: the direct torque

– Torque control signal (controller output). 

controller, the noise signal activation, and the elements

– Motor torque. 

that emulate the physical system: power supply, recti-

– Motor current. 

fier block, inverter, and motor. Fig. 1 shows the cited setup and its connections. 

2.3 Neural Network Training

2.2 Data Generation for Training The process is divided into several trials to define the best parameters for the neural network, with the con-As described in Table 1, during the model simulations, figurations shown in Table 2. After the training pro-different combinations of speed and torque are applied cess, the model’s performance is evaluated using con-by using step signals at specific time intervals at the fusion matrices for each trial, allowing us to visual-controller inputs, see Figure 2. 

ize the model’s ability to correctly classify normal and
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Neural Network Training
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Table 1 Example of applied speed and torque combinations. 

step

Operation State

Torque Ref

Torque Motor

Speed Ref

T1

Null

Null

Null

Null

T2

Acceleration

Null

Over Reference

0 to 1200 RPM

T3

Stable

600 and 100 Nm

According with reference

1200 RPM

T4

Deceleration

100 Nm

Under refernce

1200 to 500 RPM

T5

Stable

100 Nm

According with reference

500 RPM

T6

Acceleration & Stable

100 Nm

Over and according with reference 500 to 700 RPM

Fig. 2 Direct Torque Control loop response, normal operating conditions. 

Fig. 3 Direct Torque Control loop response, operating conditions with noise. 
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METRICS CALCULATION

Fig. 4 Torque trends of 4 motors: a) and b) normal operation, c) and d) with mechanical issues. 

faulty operating states of the system. The results of each trial conducted are presented below: In the first trial, the confusion matrix (Figure 5) shows that the model achieved a 70.3% accuracy. In the second trial, whose results are presented in the confusion matrix in Figure 6, the model’s consistency was confirmed, and a 72.7% accuracy was achieved. Subsequently, in Trial 3, an increase in the input data was made, and three previous samples were considered for analysis. That is, to determine the system’s performance at time t0, the values corresponding to t−3, t−2, t−1, and t0 were taken into account. Therefore, if the same variables are considered for each moment in time, the number of neurons in the input layer will be 24. With the changes considered, a 73.9% accuracy was achieved, and the model’s ability to distinguish between normal and faulty states improved (Figure 7). In Trial 4, the algorithm’s robustness and its ability to generalize from the training data were demonstrated, achieving the best performance (Figure 8). For Trial 5, an adjustment was made to the data alloca-tion as follows: 70% for training and 30% for testing, in order to evaluate whether the algorithm maintains its Fig. 5 Confusion matrix, Trial 1

performance and to rule out overfitting of the network (Figure 9). 

T P + T N

accuracy =

(1)

3 Metrics Calculation

T P + T N + F P + F N

Based on the developed trials, precision, accuracy, and Precision shows the proportion of correct positive pre-recall are calculated, considering the values of true pos-dictions. (2):

itives (TP), false positives (FP), false negatives (FN), T P

and true negatives (TN) shown in each of the confusion precision =

(2)

T P + F P

matrices from the previous section. Accuracy indicates the proportion of correct predictions and is defined as Recall indicates the proportion of actual positives that

(1):

have been correctly predicted. (3):
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Table 2 Configuration of the conducted trials. 

Trial

Input layer size

Hidden layer size

Output layer size

Training-validation sample split Trial 1

6

2

2

90 - 10

Trial 2

6

5

2

90 - 10

Trial 3

24

1

2

90 - 10

Trial 4

24

3

2

90 - 10

Trial 5

24

3

2

70 - 30

Fig. 6 Confusion matrix, Trial 2. 

Fig. 8 Confusion matrix, Trial 4. 

Fig. 9 Confusion matrix, Trial 5. 

Fig. 7 Confusion matrix, Trial 3. 
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CONCLUSIONS
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