
International Journal of Engineering Insights: (2023) Vol. 1, Nro.1, Regular Paper
https://doi.org/10.61961/injei.v1i1.3

Fast FPGA-Based Image Feature Extraction for Data Fusion
in Autonomous Vehicles.

Jeremias Gaia · Eugenio Orosco · Francisco Rossomando · Carlos Soria

Received: 14 May 2023 / Accepted: 10 August 2023

Abstract: Computer vision plays a critical role in many

applications, particularly in the domain of autonomous

vehicles. To achieve high-level image processing tasks

such as image classification and object tracking, it is

essential to extract low-level features from the image

data. However, in order to integrate these compute-

intensive tasks into a control loop, they need to be

completed with the highest speed possible. This paper

presents a novel FPGA-based system for fast and accu-

rate image feature extraction, specifically designed to

meet the constraints of data fusion in autonomous ve-

hicles. The system computes a set of generic statistical

image features, including contrast, homogeneity, and

entropy, and is implemented on two Xilinx FPGA plat-

forms - an Alveo U200 Data Center Accelerator Card

and a Zynq UltraScale+ MPSoC ZCU104 Evaluation

Kit. Experimental results show that the proposed sys-

tem achieves high-speed image feature extraction with

low latency, making it well-suited for use in autonomous

vehicle systems that require real-time image processing.

Moreover, this system can be easily expanded to extract

extra features for diverse image and data fusion appli-

cations

Keywords FPGA · SoC · Image Processing ·
xfOpenCV

1 Introduction

Images are used as inputs in a variety of systems [1,

2,3] , and techniques for extracting information from

them are the foundation of many applications such as

simultaneous localization and mapping (SLAM) [4], au-

tonomous driving safety [5], and human-robot inter-

action [6]. However, achieving high-speed image pro-
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cessing for these applications is computationally expen-

sive for standard CPUs due to time constraints and

large image sizes. To address this challenge, Field Pro-

grammable Gate Arrays (FPGAs) can generate dedi-

cated hardware with low latency and high throughput

computation[7], making them a suitable means of as-

sisting general-purpose CPUs. FPGA technology can

be seen as an additional layer of the system that per-

forms parallelizable tasks, thereby reducing the CPU’s

computational load and, as a result, latency [8].

FPGAs are capable of simultaneously handling mul-

tiple standard communication ports, such as CAN bus,

Ethernet, USB, etc., at high speeds. In the context of

data fusion, the availability of such a device enables the

creation of a communication-centric platform between

connected sensors [9]. Additionally, by utilizing paral-

lel structures, complex calculations can be performed

significantly faster.

This paper presents a high-speed FPGA-based im-

plementation for computing a set of common statistical

image features that is performance-optimized by ex-

ploiting FPGAs’ capacity to integrate sequential and

parallel processing. The main contributions of this pa-

per include a design that performs feature extraction

with only one pass of the image through the system,

and a primary design restriction of low latency suitable

for operation inside a fast data fusion algorithm.

The rest of the paper is organized as follows: Sec-

tion 2 contains related research articles, expressions used

to determine different statistical image features are pre-

sented in Section 3, and Section 4.1 describes the pro-

posed FPGA-based system. Experimentation results are

shown in Section 4.2, followed by the conclusions in Sec-

tion 5.

2 Related work

In conventional image processing applications, software

developers commonly utilize the recognized OpenCV

library [10], which uses the large amount of hardware

resources available on computers to perform its oper-
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ations. However, when it comes to embedded systems

where resources are limited, these operations need to

be optimized. To address this issue, researchers have

developed numerous algorithms to optimize image pro-

cessing operations in FPGAs, such as color to gray-level

conversion [11], histogram construction [12] and edge

detection [13], among others.

Histograms are the first layer of statistical informa-

tion that can be extracted directly from grayscale image

pixels. Younis et. al. proposed in [12] a histogram con-

struction hardware implementation. Their system re-

ceived grayscale images (pre-processed with MATLAB)

as input for a finite state machine to perform the his-

togram calculation.

Edge detection algorithms enable computer vision

systems to detect objects or patterns present in the in-

put image. Tsiktsiris et. al. [13] designed a fast edge de-

tection module based on Sobel operator algorithm that

outputs an image containing only the edges of the in-

put. Recently, filtering techniques for event-based cam-

eras such as a background activity filter and a mask

filter, were also implemented on FPGA [14].

Similar to our work, Siddiqui et. al. [15] proposed

an FPGA-based soft processor called Image Processing

Processor (IPPro) for general purpose image process-

ing. The authors designed and tested an instantiable

component, since they focus on multi-core operation.

However, the source code is not available.

The computation of Graylevel Co-occurrence Ma-

trix (GLCM) has been explored in prior research, as

seen in [16]. In this method, the authors propose parti-

tioning the input image into 128 by 128-pixel patches to

form the GLCM matrices. In a more recent study [17],

researchers introduced a novel technique using a cir-

cular buffer unit per orientation to compute the co-

occurrence matrix for each orientation.

Hardware description languages use the Register-

transfer-level (RTL) abstraction to create high-level cir-

cuit representations, which can be used to derive lower-

level representations and actual wiring [18]. Recently,

Xilinx company has developed the xfOpenCV library

[19], which provides a set of performance-optimized ker-

nels for Xilinx FPGAs and SoCs that enable the trans-

lation of common computer vision operations from se-

quential software processing to parallel hardware pro-

cessing. By utilizing these kernels, programmers can

avoid dealing with the internal connections of the sys-

tem since the library generates RTL code automatically.

3 Materials and Methods

In this section, the theoretical background used to de-

termine different statistical image features is presented.

Fig. 1 A broad histogram denotes a high contrast picture
since the image’s pixels cover the entire range of gray levels,
in contrast to a narrow and peaky histogram that indicates a
low contrast environment.

3.1 Histogram-based measures

Histograms offer a lot of information about the image.

Take as example the different histogram variations pre-

sented in Fig. 1. A broad histogram denotes a high con-

trast picture since the image’s pixels cover the entire

range of gray levels, in contrast to a narrow and peaky

histogram that indicates a low contrast environment.

Therefore, histogram-based measurements enable the

quantification of the overall attributes of the image.

Three histogram-based metrics are employed in this

article: histogram flatness measure (HFM), histogram

spread (HS), and global entropy.

3.1.1 Histogram Flatness and Histogram Spread

Introduced by Tripathi et. al. in [20], these metrics

are very useful to assess image contrast. HFM can be

expressed as the ratio of the geometric mean of the

image histogram h(x) to the arithmetic mean of h(x)

(Eq. (1)).

HFM =

{∏n
i=1 xi

} 1
n

1
n

∑n
i=1 xi

(1)

where xi is the count for the i-th histogram bin and n

the number of histogram bins.

Histogram spread is the ratio of the inter-quartile

distance to the range of the histogram (Eq. (2)). Here,

the inter-quartile distance is the difference between the

3rd and the 1st quartile of the cumulative histogram.

The 1st and 3rd quartile means the histogram bins at

which cumulative histogram has 25% and 75% of the

maximum value respectively.
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HS =
3rdquartile− 1stquartile

max(h(x))−min(h(x))
(2)

3.1.2 Image Entropy

The global entropy of an image (Eq. (3)) measures the

amount of low-level information contained in it. The

probability for a pixel taking certain value in an im-

age can be represented as the bin count for the given

gray tone i in the image histogram h. Then, the global

entropy can be defined as follows:

entropy =

255∑
i=0

h(i) log2(h(i)) (3)

3.2 Gradient-based measures

Extracting the image gradient in a given direction is

the first step for textural analysis. Image classification,

edge enhancing, and visual feature extraction are some

of the applications that rely in this principle. Therefore,

being able to objectively evaluate how much ”sharp” an

image is, could help gradient-dependent algorithms to

improve their performance.

3.2.1 Gradient Magnitude

An initial technique to assess image sharpness involves

deriving the mean value from its magnitude image. Let

Gx be the gradient image in the x direction and Gy the

gradient image in the y direction, the magnitude image

(G) can be defined as:

G =
√

(Gx)2 + (Gy)2 (4)

then, the mean value of G is

GradMagnitude =
1

rows ∗ cols

rows∑
i=1

cols∑
j=1

G(i, j). (5)

Greater values of the gradient magnitude measure

indicate the presence of greater textural information in

the image.

3.2.2 Gamma Sharpness (γsharp)

Shin et.al. [21] proposed to apply the mapping function

in Eq. (6) to the magnitude image G.

ĝi =


1

Ng
log(λ(gi − γ) + 1), for gi ≥ γ,

0, for gi < γ,
(6)

where Ng = log(λ(1− γ) + 1) is the normalization fac-

tor, gi denotes the gradient magnitude at pixel i, γ in-

dicates the activation threshold value for the mapping

function, λ is a control parameter to adjust the map-

ping behaviour and ĝi stands for the amount of gradient

information at pixel i. Note that gi ∈ [0, 1], assuming

a pixel range of [0, 255] and a normalization factor of

1/255. After the estimation of gi, the γ sharpness mea-

sure can be obtained with Eq (7):

γsharp =
∑
i∈G

ĝi (7)

3.3 Haralick Textural Features

In 1973, Robert Haralick proposed a new approach to

extract textural information from an image: the GLCM

[22]. According to this method, the spatial relationship

between the gray tones in an image I encodes the tex-

ture information for that image.

The first step to extract this information is to create

the GLCM. All gray tone transitions in a given direction

are counted and arranged in a MxM matrix, being M

the amount of gray levels present in the image.

Consider for instance a digital image with pixel val-

ues ranging from 0 to 255. If all pixel values are present,

the GLCM could be as big as 255 x 255. Once the

GLCM has been computed, a set of features can be ob-

tained by manipulating this matrix. We refer the reader

to [22] for further details.

This work considers four textural features: contrast,

homogeneity, entropy and the information measure of

correlation.

In order to further understand the following equa-

tions, notation is provided.

– P refers to the graylevel co-ocurrence matrix.

– p(i, j) is the (i, j)th entry in the normalized graylevel

co-ocurrence matrix.

p(i, j) = P (i, j)/R, (8)

being R a normalization factor.

– px(i) refers to the ith entry in the marginal-probabi-

lity matrix obtained by summing the rows of the co-

ocurrence matrix P.

3.3.1 Angular Second Moment (energy)

f1 =

Ng∑
i

Ng∑
j

{p(i, j)}2 (9)
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Fig. 2 Overview of the proposed system based on the Zynq UltraScale+ MPSoC ZCU104 architecture.

3.3.2 Contrast

f3 =

Ng−1∑
i

n2

{
|i−j|=n

Ng∑
i

Ng∑
j

p(i, j)

}
(10)

3.3.3 Homogeneity

Also known as inverse difference moment (IMC)

f5 =

Ng∑
i

Ng∑
j

1

1 + (i− j)2
p(i, j) (11)

3.3.4 Entropy

f9 = −
Ng∑
i

Ng∑
j

p(i, j) log(p(i, j)) (12)

3.3.5 Information Measure of Correlation (IMC)

f12 =
HXY −HXY 1

max{HX,HY }
(13)

with HXY being the same as f9. HX and HY are en-

tropies of px and py respectively, calculated with ex-

pression (12). Then

HXY 1 = −
Ng∑
i

Ng∑
j

p(i, j) log{px(i)py(j)} (14)

It is noteworthy that the contrast and entropy mea-

surements proposed in this subsection are defined over

pixel transitions encoded in the GLCM rather than over

the raw pixel values.

Measures like homogeneity, contrast or entropy can

be quickly interpreted. However, as Haralick et.al. stated

in [22], not all of these features can be easily understood

from a human perspective. This is the case of the An-

gular Second moment and the IMC. The first can be

interpreted as a measure of the energy of the image,

but also as a second homogeneity measure. Correlation

metrics report the presence of linear dependencies in

the image. In the case of the IMC measure, by combin-

ing different correlations it provides a reference of the

amount of organized structure in the image.

4 Results and Discussion

4.1 Implementation details

Figure 2 shows an overview of the system based on the

Zynq UltraScale+ MPSoC ZCU104 architecture. Mod-

ern FPGAs can be considered a unit of two main blocks:

a Processing System (PS) block and a Programmable

Logic (PL) Block. The first normally contains an em-

bedded processor, while the second contains designed

hardware [23]. Both blocks are carefully employed in

this article, with the PL being used for the majority of

the calculations and the PS being used for operations

that cannot be parallelized.

Compilation directives can severely affect the sys-

tems performance. The DATAFLOW directive for instance,

plays a critical role in enabling the smooth flow of in-

formation between different functions. These, in turn,

allow the system to efficiently perform all the neces-

sary operations with a single pass of the image. This is

achieved through task-level pipelining, which allows for

functions and loops to operate in parallel and overlap,

effectively reducing latency and improving the over-

all throughput of the system. Without the use of the

DATAFLOW directive, the input image would have to be

stored in RAM, thereby reducing the system’s efficiency.

The information flow within our proposed system

begins with the processing system, which operates on

a PetaLinux distribution [24], reading an input image.

Subsequently, the image is transformed from RGB to

grayscale and the GLCM computed. Next,the image

and the computed GLCM are streamed to two distinct
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Table 1 Comparison with state-of-the-art research.

Task Article Extracted Features Image Size Time[ms] Platform
[12] Histogram 640x360 1.15 Virtex XC4VSX35

Histogram Computation Ours Histogram 640x480 2.40 ZCU104
Ours Histogram 640x480 1.09 AlveoU200
[13] Histogram 640x480 98.00 Altera Cyclone IV EP4CE11

Magnitude image estimation Ours Histogram 640x480 2.40 ZCU104
Ours Histogram 640x480 1.09 AlveoU200
[16] 6 Haralick features 512x512 101.50 Virtex-XCV2000
[16] 6 Haralick features 512x512 37.00 Virtex-XC5VLX50T

GLCM Computation + Features [17] 4 Haralick features 176x144 5.8 ZC702
Ours 5 Haralick features 640x480 2.40 ZCU104
Ours 5 Haralick features 640x480 1.09 AlveoU200

Table 2 Latency [ms] for different implementations of our
sistem.

Image Size
Platform 128x128 320x240 400x300 512x384 640x480 720x480

AlveoU200 0.25 0.31 0.4 0.72 1.09 1.22
ZCU104 0.74 0.85 1.14 1.66 2.40 2.76

PC 104.06 159.11 148.34 230.32 191.42 194.08

blocks: one responsible for generating the histogram

and its associated features, and the other for generat-

ing the magnitude image and its related metrics. Con-

currently, the GLCM-dependent textural features are

computed.

Once the parallel computations are completed, re-

sults are written into a buffer to return to the PS. Since

this research is focused on the optimization and acceler-

ation of the feature extracton process, results are screen

printed. Future work may include this information in a

control loop.

The source code files were developed in the Xilinx

Vitis IDE v2021.2 and Vitis HLS IDE v2021.2. The

xfOpenCV library V2022.1 was installed along with the

OpenCV V4.4.0 library. GCC 7, G++ 7 and CMake

3.16 were used for compilation.

4.2 Results

Our design was simulated, synthesized, implemented

and tested in two separate platforms: a Zynq Ultra-

Scale+ MPSoC ZCU104 Evaluation Kit [25] and an

Alveo U200 Data Center Accelerator Card [26]. Also,

a software version of the system was evaluated for com-

parison purposes using a computer with an Intel Core

i9-10900 CPU running at 2.8 GHz with 16GB of RAM

and Ubuntu 20.04 LTS operating system.

Most state-of-the-art research focuses on acceler-

ating only one image operation: performing RGB to

gray conversion, histogram calculations, Haralick fea-

tures extraction, etc. Our proposal, on the other hand,

is able to perform multiple computations at the same

time with a single pass of the image through the system.

Despite this distinction, we provide a comparison of our

system to related research in Table 1. Results displayed

in this table are those reported by the original authors

in their publications.

In terms of histogram computation, our system is

compared to [12]. The AlveoU200 implementation of

our system and [12] have similar performance, while

the ZCU104 needs twice as much processing time.

Our proposal outperforms the work by Tsiktsiris et.

al [13] in the magnitude image estimation task. The

highly parallel nature of the PL part of our system

allows for multiple tasks to be performed simultane-

ously. This condition explains the fact that our mea-

sured times for the different tasks are the same.

Siéler et. al. [16] proposed a system for Haralick

features extraction implemented on two Virtex boards.

Table 1 shows that for a 512x512 image the Virtex-

XC5VLX50T board performs better than the Virtex-

XCV2000 implementation. For a larger image , our pro-

posed system outperforms [16] work in this task, with

the exception of estimating one feature less. Finally, the
work by Atitallah et. al. [17] needs 5.8 ms to calculate

the GLCM and four Haralick features for a 176x144

image in a Zc-702 FPGA device.

Table 2 compares the performance of both imple-

mentations of the proposed system versus a desktop

PC. Latency times were measured feeding the system

with different versions of an input image. The perfor-

mance metric is the time difference between the start

of the grayscale image and GLCM stream to the PL

and the end of the last metric computation. The afore-

mentioned time measurements were obtained through a

combination of C-coded internal calculations on the de-

ployed system and visual inspection of the ”Live Wave-

form Viewer Tool” in Vivado Behavioral Simulation.

While the embedded platforms’ calculation times in-

crease with the image size, even for the largest image,

they perform in under 3 ms. However, the performance

gap between the FPGA implementation and a PC is

substantial, around two orders of magnitude.
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5 Conclusions

In this paper, low-latency algorithms for for fast and

accurate image feature extraction were successfully im-

plemented. A high-speed hardware design provides the

user with a set of common statistical image features

that can be leveraged for different applications.

Two Xilinx platforms with different hardware re-

sources were used to test the system with various im-

age sizes. Experimental results show that the proposed

design is highly efficient, with the ability to complete

computations in less than 3 ms, making it appropriate

for use in a control loop. These findings strongly sug-

gest that the system is well-suited for integration into

autonomous vehicle systems.

Given the use of the Xilinx’s xfOpencv library to

translate common computer vision operations from se-

quential software to parallel hardware, it should be easy

to extended the proposed system to extract other fea-

tures or perform different image operations in future

developments.
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